The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
author
Abstract:
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality conditions would usually lead to some complicated equations while some integral terms may be presented. Then a systematic procedure based on state transition matrix will be addressed to overcome and simplify the mentioned complexities. Therefore the state transition matrix would be used to determine the exact solution of the min-time control problem in a typical LTI system. The min-time problem would be converted to some algebraic nonlinear equations by using of the state transition matrix. These algebraic equations are depended on some definite parameters. Hence the required design parameters as well as switching times and the possible minimum time would be analytically determined in the minimum-time optimal control problem. Thus the min-time control signal would be explicitly determined by computing of the switching times and also some other constants. The proposed control scheme is applied in some typical dynamical examples to show the effectiveness of the suggested control method.
similar resources
Max–Min Optimal Control of Constrained Discrete-time Systems
This paper considers the optimal control problem for constrained discrete–time systems affected by measured and bounded disturbances and uncertainties in the underlying system equations. This problem setting leads to the sup–inf robust optimal control problems. Three classes of discrete–time systems permitting the characterization of the sup–inf value functions and robust optimal control polici...
full textA level set approach for the solution of a state-constrained optimal control problem
State constrained optimal control problems for linear elliptic partial differential equations are considered. The corresponding first order optimality conditions in primal-dual form are analyzed and linked to a free boundary problem resulting in a novel algorithmic approach with the boundary (interface) between the active and inactive sets as optimization variable. The new algorithm is based on...
full textsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Optimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
full textTime-Domain Solution of LTI State Equations
that is, as a set of coupled, first-order differential equations. The solution proceeds in two steps; first the state-variable response x(t) is found by solving the set of first-order state equations, Eq. (1), and then the state response is substituted into the algebraic output equations, Eq. (2) in order to compute y(t). As in the classical solution method for ordinary differential equations w...
full textA NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL
In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...
full textMy Resources
Journal title
volume 51 issue 2
pages 3- 3
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023